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THE RICCI FLOW ON 2-ORBIFOLDS
WITH POSITIVE CURVATURE

LANG-FANG WU

Abstract

The Ricci flow on orbifolds converges asymptotically to a soliton solution.
This also provides us with a canonical metric on every orbifold.

0. Introduction

Richard Hamilton [3] proved that under the Ricci flow a metric on
any compact 2-dimensional, smooth manifold with positive curvature will
converge to one of constant positive curvature. One can extend this re-
sult rather easily to 2-dimensional orbifolds whose universal covers are
manifolds. In this paper we will prove an interesting result concerning
the asymptotic behavior of the Ricci flow on the so-called class of “bad”
orbifolds, or orbifolds whose universal cover is not a manifold.

The Main Theorem. Any metric with positive curvature on a bad orb-
ifold asymptotically approaches a Ricci soliton at time infinity under the
Ricci flow, where a soliton is a solution which moves only by diffeomor-
phism.

The main theorem gives us the first known example where a non-Kéhler-
Einstein orbifold converges to a nontrivial Ricci soliton, namely a metric
of nonconstant curvature, The main theorem also provides us with a way
to get a canonical metric on a bad orbifold. On a compact surface, there are
no soliton solutions other than those of constant curvature (see Theorem
10.1 in [3]). Bad orbifolds do not admit metrics of constant curvature,
so every soliton solution has nonconstant curvature. The main theorem
also suggests strongly that a similar phenomenon may occur on higher
dimensional Kdhler manifolds.

A local coordinate expression of an equation on a manifold A and
on any quotient of M by a finite group action look the same, since an
orbifold is locally the quotient of a manifold by a finite group action. It
is easy to obtain short time existence for the Ricci flow on an orbifold in
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the standard way, and the Harnack’s inequality and the evolution equation
for @ in [3] hold on any orbifold with positive curvature. Furthermore,
‘by using the evolution equation for @ and a slight modification of the
arguments given in [1], the entropy estimate on orbifolds can be easily
obtained. The only argument in [1] which fails in the bad orbifold case is
the one that guarantees a nonzero lower bound for the injectivity radius.
(See [3], p. 251.) Nevertheless, we.can complete the proof of the main
theorem in the bad orbifold case using Theorems 2.7 and 3.7, which show
that every point on an orbifold lies in a ball whose radius is comparable to
1/R_,, and whose area is comparable to 1/R__ . Then the main theorem
follows directly from the arguments given in [3].

All the 1-gons and 2-gons in this paper are simple unless explicitly stated
otherwise.

Acknowledgements. The author owes much of her understanding of the
geometric properties of the problem to her advisor, Richard Hamilton.
The author would also like to thank the following people for their help and
encouragement: Steven Altschuler, Mike Freedman, and George Wilkens.
Special thanks is due to Lynne Wilkens for her many helpful corrections
in an early draft of this paper. This work was done in partial fulfillment
of the author’s Ph.D. requirements while she was visiting the University
of Hawaii; she would like to thank them for their hospitality.

1. The topological properties of orbifolds

If a group G acts properly discontinuously on a smooth manifold A,
then the quotient space is a smooth orbifold. If the universal cover of a
“smooth orbifold is a manifold, then we call it a good orbifold; otherwise,
we call it bad.
Theorem 1.1. The only bad 2-dimensional orbifolds without boundary
are of the following types: v

(a) Zp—teara’rop T:S% with an orbifold point with an angle 2n/p. lts
Euler characteristicis x(T)= 1+ 1/p; p is an integer.

(b) (Z,, Z,)football F: 8% with two orbifold points with angles 27 /p
and 2n/q. Its Euler characteristicis y(F) = 1/p+1/q; p and q are
distinct integers, not less than 2.

(See [4], Theorem 2.3.)
Proof. See [4].
For more details about the topological properties of orbifolds see [4].
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2. The geometric properties of Zp-teardrops with positive curvature

From now on we consider M a compact orbifold whose scalar curvature
satisfies 0 < R < R_, . We consider a geodesic 2-gon a broken loop
consisting of two geodesic segments.

Lemma 2.1. Let D° C M bea topological 2-disc, not containing any
orbifold points in the interior, whose boundary is a convex geodesic 2-gon.

Then LIdD*]>2n//R__.

Proof. Let y be the shortest geodesic 2-gon in D*. We may assume
L[y] < 2n/\/R_,,, and we will derive a contradiction. This implies A4
cannot be conjugate to B along y (see Corollary 1.30 in [1]). We will
imitate the variational arguments in Lemma 5.6. in [1] to show that y
can be shortened. If y makes angles at two points, call them 4 and B.
If ¥ makes an angle at 4, choose B to divide y in half. If y makes no
angles, choose 4 and B again to divide y in half. Let y be the union
of the two geodesic segments y, and 7, .

Case 1. Assume 4 € int(Dz) and B € int(DZ). (See Figure 1, next
page.)

Then all of y € int(DZ) . By the variation arguments in Lemma 5.6 in
[1], we know ZA = ZB = . This tells us that y is a closed geodesic loop
in D?. From the fact that D’ is an even-dimensional manifold we get
A is conjugate to B along y (see Theorem 5.9 (1) in [1] ). By Corollary
1.30 in [1], we get L[9D*]>2n/\/R__ .

Case 2. Assume 4 €0D”.

() Assume B € int(DZ). Then /B = m, as in Case 1. (See Figure 2,
next page.)

y, and y, cannot have any arc on the boundary. If y, had an arc
on the boundary, then we would have y, C dD? since ; and oD? are
geodesics. This tells us that B is on the boundary. 8D% is a convex
geodesic 1-gon so we have Z4 < . From Lemma 5.6 in [1], we can find
some other shorter 2-gons in D*. Thus a shortest 2-gon cannot occur in
this case.

(ITI) Assume B € oD . (See Figure 3, p. 579.)

8D? is a convex geodesic 2-gon, so we have ZA <7 and ZB<=m.If
/A= /B =m,then y is a closed geodesic. By Corollary 1.30 in [1], we
have L[6D’] > 2n/\/R - If either Z4 <7 or ZB < m (see Lemma
5.6 in [1]), we can find some other shorter 2-gons in D? with at least one
endpoint in the interior of D*. So the endpoints of the shortest 2-gon
cannot both be on the boundary.
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FIGURE 1

pick a tangent vector V at

—LA=LA+24,,

where £4, <7n/2.
L4, < mf2.

(See Lemma 5.6 in [1].)

FIGURE 2
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e

FIGURE 3

Suppose now that M is a teardrop orbifold with one cone point at P
in the rest of this section. Let U = M —P,, where P, satisfies d(F,, P) =
max{d(P, m) | me M}.

Corollary 2.2. Let M bea Z p-teardrop With positive curvature. Denote
by i(P, U") the injectivity radius of the orbifold point P in the universal
cover U™ of U, where II": U" — U is the covering map at P. Then

b4

2.1) i(P,U")>

max

Proof. Suppose d(F,, P) > i(P, U"). We may assume that i(P, U")
< n/y/R,, - Then Lemma 5.6 in [1]) we have a shortest geodesic 1-
gon y at P on U*. The metric on U” is 1nvar1ant under the Z -

action. So we have p shortest geodesic 1-gons {y,}:_f in U", where
Lly1<2i(P,U") <2n/\/R_, forall i,and yiny; = P for any distinct
i and j. Since the exponential map is injective within the injectivity
radius and L[y,] < 2i(P, U"), the disc enclosed by each y, has an angle
less than 27n/p at P. Then we have I'I*(yi) =y in M, Vi.
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From the topology of M, y cuts M into two 2-discs {D j}jj . Pey,
so D, is a smooth 2-disc and P is not in the interior of D;, for both
j. The total angle at P is 2n/p < m. (See Theorem 1.1.) So oD; is a
convex, geodesic 1-gon for both j. By Lemma 2.1 we have 2-i(P, U") =
L[y,)>2n/\/R_, . That is a contradiction. So we have
n
R

max

Suppose d(P,, P) < i(P,U"). II"(8U") = P, in M and every point
on U™ has a unique shortest geodesic from P. This implies that there
are many geodesic 2-gons at P and P,;let n be one of them. The cone
angle at P isless than 7, and # cuts M into two 2-discs {Dk},zm. The
boundary of one of the two discs is a convex geodesic 2-gon. By Lemma
2.1, we have L[y} > 2n/,/R_, , which implies i(P, U") > d(F,, P) >
7y o

On the universal cover U™ of U, B = exp,(B(0, (rn/\/R_,)) is
strongly convex if » < 1. (See Theorem 5.14 in [1].) Let B, =II"(B)),
where IT": U" — U is the p th covering map at P.

Lemma 2.3. Any geodesic n in N=M—B, /4 which starts at 8N and
returns to ON must have length L{n] > 3n/(2\/R__.).

Proof- (See Figure 4.) Let y be the shortest geodesicin N which starts
and ends at ON . Either y passes through F, or it does not. If y does
not pass through P,, then we can lift y to U". Since B )4 is strongly

- convex, y cannot have length zero. If y does pass through F,, then since
P, is the furthest point from P, y cannot have length zero. Let a, be M
denote the endpoints of the shortest geodesic y. A variational argument
easily shows that y must intersect &V at right angles. The Gauss lemma
tells us that V¢ € 0B, J4» the unique minimizing geodesic y, from p to 14
intersects 0B, j4 ata right angle. Hence y, Uy, Uy is a geodesic 1-gon at
the orbifold point. By Lemma 2.1, L[y, Uy, Uy} > 2n/\/R_,. .

From the definition of B,,, we have L[y,] = L[y,] = n/(4\/R,,),
which implies L[y] > 37/(2\/R_,,) -

Lemma 2.4. Any geodesic 1-gon y in the closure of B, 4 B, /8 with
the endpoint x € 0B, ,, has length > C,/\/R, , where

(2.3) o =min{27t, 2\;§7t sin(ﬁn)}.

(2.2) i(P,U") 2

16

Proof. (See Figure 5, p. 582.) Let D DO B1/4 be the disc which is
enclosed by y. If D does not contain the orbifold point P, then by
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Teardrop

N=M-B,

FIGURE 4

Lemma 2.1, L[y] > 2n/\/R_,, . If D does contain P, then consider
the lifting y* of y in the universal cover B] 14 Of By . The fact that D

contains P tells us that the endpoints of y* are two different preimages of
X . Then by Corollary-1.30 in [1] we may compare Bl* /4 with the standard
sphere of constant curvature R_. . This implies

2v27 sin (ﬁ%)
PRy
Lemma 2.5. If y is the shortest geodesic 2-gon in M with at least one
endpoint in N =M — B1/4, then L[y]1> C,/+\/R_,. ., where

ax ’

3—7[ 2\/znsin v2n z
2’ p 16 4"

L[yl 2

C, = min {27z s

Proof. (See Figure 6, p. 583.) If y makes angles at two points, call
them A and B. If y makes an angle at A, choose B to divide y in
half. If y makes no angles, choose 4 and B again to divide y in half
Let 7 be the union of the two geodesic segments, y, and 7, .



582 LANG-FANG WU

the standard sphere with radius » = /2/R
L[UB)] = 2rrsing,

1)/ Ropax = 10 =2/ /R 0.

so 60 =1n/V2,

LI, 71> mingy g ooy 427 \/Rf_’_ sinln/V2) 2 (2V27) )/ R sin((V271/16) .

s0 L[] > (2V27)/(P\/R . )sin((vV27)/16).

max

FIGURE 5

Case 1. Assume 4 € int(N). By Lemma 5.6 in [1], we have Z4=17.
Any closed curve which connects 9B, /4 and 9B, /8 has length larger than
(n/4)\/Rp,y - Since C > m/4, we may only consider the case where
B € int(M - B, /8) , which implies £B = n. Then we get a closed geodesic
y. By Case | in Lemma 2.1, we have

(2.4) LIz —

max

Case 2. Assume 4 € 3(N) and B ¢ int(N).

(I) Assume B ¢ 0B, /4 Since C > n/4 we may only consider the case
where y is in By, - Bl/8‘ Then /B =7 (see Lemma 5.6 in [1]) and y
is a geodesic 1-gon. By Lemma 2.4, we have L[y] > C,/\/R_, , where

(2.5) c, =min{27t, Z‘f” sin (‘/156”)}
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(IT) Assume B € 8B1/4. If y hasan arc # in N, then # is a geodesic
segment which starts and ends at 8 V. By Lemma 2.3, we have
3n
(2.6) LIz Lin 2 /R

If y, and p, are both in B, 145 WE have Z4 <7 and £B < m. Using the
same arguments given in Lemma 2.1, we get

max’*

2n
2.7 >
(2.7) L[yl = R
Corollary 2.6. For each point & in N, we have i(E,M)>C,/(2\/R_,.) .
where
o 3n 2V2n . (V2=n\ =
(2.8) Cz—mm{Zn,T, - s1n(16),z}.

Theorem 2.7. If M is any teardrop with positive curvature, then for
each point £ € M, we have

T
A | exp (B (o, W—)» >C/R__
( ¢ Rmax 2 :
where

@9)  C=min{201-coscyic,ln, LY,

Proof. Let H bea 2-dimensional Riemannian manifold with curvature
R .« = Ry . For any point ¢ on H, assume exp; |B+(0,p/\/m) is an
imbedding and © > p. Then, if we compare it with the standard 2-sphere

with constant scalar curvature R, , by Corollary 1.30 in [1], we have

v 2n(sinv)
—— D >
(2.10) L (expé (6B (O, % 2))) 2 =% 5 for all v > p.

max/ max/
In particular, we have ‘

(2.11) A (expé (B (O, #))) >2(1 - cosp)npz/Rmax.

Theorem 2.7 follows easily from this result as we will now demonstrate.
If & € the closure of N, then by Corollary 2.6, we have

(oo (0 7))

o)

> 2(1 —cos Cz)[c2]2n/4Rmax‘
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If £ isin Bl/4, then

s oo i) oo 53

On the universal covering U™ of U,

oo o[- amm))

which implies
A (

v

)4
T )l )
o))

2n(1 - cosl/4
max

Let € =min {2(1 - cos G,)[C,'r, ZU=gesll

8p

3. The geometric properties of footballs with positive curvature

In this section we assume that M is a football orbifold with cone angles
2z/p and 2zm/q, and with positive curvature. In order to apply the same
techniques for teardrops to footballs, first, we need to have some control
over the lower bound of the distance between the two orbifold points,
d(P, Q).

Theorem 3.1. Ona (Z,, Z q)-football M with positive curvature, we
have

(3.1) d(P,Q)>

n
V ‘Rmax ’
where P, Q are the orbifold points.
Proof. Let P, be a point which satisfies
d(Py, P) = max{d(P, m) | me M},
Case 1. Assume d(P, Q) = d(F,, P). Let V= M — Q. Consider
the pth covering I1: V™ — V' with respect to the Zp-action at P. Since

V =M-Q,wehave I1(8V") = Q. This implies d(8V", P) >d(P, Q).
Let i(P, V") denote the injectivity radius of P in V",
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(I) Assume (P, V*) < d(P, Q). Combining Corollary 1.30 and Lem-
ma 5.6 in [1], either i(P, V") > n/\/R__, or there is a shortest 1-gon y
at P in V*UaV"* with L[y] = 2i(P, V"). The metric on V*uav"
is invariant under the Z -actlon and the exponential map is injective
within the injectivity radlus agam we get p disjoint geodesic 1-gons. So
if y exists, then the disc enclosed by y must have an angle less than
2n/p. Since 2zn/p < =, the geodesic 1-gon y is convex. By Lemma
2.1, we have L[y] > 2n/\/R_, and i(P, V") > n/\/R_,. . So we have
dP,Q)>2n/\/R -

(I) Assume i(P, V") > d(P, Q). This tells us that

max{d(y, P) |y €dV "} =d(P, Q).
Otherwise, there would be a y € V* with (P, V") > d(y,P) >
d(P, Q), which contradicts the assumption d(P, Q) = d(F,, P) =
max{d(P, m)| me M}. So we have

11 {0 exp,(B(0, d(P, Q) } = Q.
This also implies that there are 2-gons y C M at P and Q with L[y] =
2d(P, Q). Any 2-gon y C M at P and Q must enclose a disc D,, where
aD, is a convex geodesic 2-gon since again the angles at P and Q are
<2r/p and 2z/q which are < n. By Lemma 2.1, we have

(3.2) 2d(P, Q)=L[y]12

This implies d(P, Q) > n/\/R_,,
Case 2. Assume d(P 0) < d( o> P). Let U =M — P,. Consider

the gth covering Uq of U with respect to the Zq-action at Q, where
I1 = v,—-U. Fix a preimage of P, namely P, and consider the pth
covering U; of Uq with respect to the Zp-action at P, where I'I;: U; —
U,. Let i(P,, U;) denote the injectivity radius of P, in U, . Let P,
be any preimage of P in U, other than P, . Let  be the minimizing
geodesic connecting P and Fy . If Q € w, then II (w) is a convex 2-gon
at P,Q in M. If Q ¢ w, then II (w) is a convex 1-gon at P in M.
In both cases, by Lemma 2.1, we have L[w] > (2n)/+/R_,,, . Thus

(3.3) dP,P)> i’z

max
(I) Assume d(P, Q)<i(P, U). (See Figure 7.) d(P, Q)<i(P,, U,),
so there exists a unique minimizing geodesic y in M connecting P and
Q. Choose the unit tangent vector ¥ at Q in M such that the two angles

R

max
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Let: [1= I'Iq o ]'I;

FIGURE 7

6, and 6, formed by V' and 7(Q) are equal. We also may assume that
g>p=>2,50 0, =6,=n/q>n/3<n/2. Let p(s) be the geodesic
which starts at ¢ in the direction of V' and is parameterized by the arc



588 LANG-FANG WU

length s. Let F be a connected fundamental domain of Hq in Uq such
that QNaF C H;l(p) , where Q is a small neighborhood of Q. Since
F is the fundamental domain, each p(s) in Hq(Q) has two different
liftings, p,(s) and p,(s), on the closure of F. I'I; is a pth covering
map at P, so we may identify the closure of F as a subset of U; .
Using d(P, Q) < i(P, U,), 6, = 0, = n/q < n/3 < n/2, and the first
variational formula in [1], for small s > 0, there is a unique minimizing
geodesic arc ‘}’i in F connecting P and p;(s) for i =1, 2 with

LI¥]<d(P, Q),
¥ Ny =p,
and
(3.4) I [T, (¥) 1N IL [T, (%)) = {p, p(9)}.
So ¢ =IT[II (¥, U¥))] isa 2-gon in M, with
(3.5) LI+ L[¥)] = Llp] < 2d(P, Q).

This implies O ¢ ¢ and the shortest 2-gon @ at P in M does not pass
Q. So w is a 1-gon. Then, by Lemma 2.1,

Lig) > Liw] > —2—,

which gives
(3.6) diP, Q)=

n
R

max

(II) Assume d(P, Q) > i(P,, U; ). Without loss of generality, we may
assume (P, U)) < (27)/y/R - Then expp, { B0, i(P,, UM} is a
smooth disc without touching any preimage of P other than P,. From
d(P, Q) > i(P, U;) , we can find p shortest geodesic 1-gons {4} in U;
with (P, U; ) = (L[4])/2. The exponential map is injective within the
injectivity radius, so the p shortest 1-gons {J} cannot intersect each other
except at the point P. Particularly the disc in U", which is enclosed by
one of the 1-gons {J}, has an angle less than 2z/p < 7 at P. By Lemma

2.1, we have

(3.7) L[6] >

which implies d(P, Q) > n/\/R_,,.
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Theorem 3.2. If M is any football with positive curvature, then the
injectivity radius of the orbifold point P (or Q) in the universal cover of
M —Q (or M — P) is greater than n/\/R_,, . Particularly we have

(3.8) A(expp [B (O’Tﬁ/‘i)])zcmm{p%“ quax}

where C is a constant.

The proof for Theorem 3.2 can be obtained directly from the same
arguments in Corollary 2.2 and Theorem 2.7.

On the universal cover Hy, of H, =M —Q at P (let Hy=M - P),
we know By =exp,(B(0, rn/\/R__)) is strongly convex if r < 1/2 (see
Theorem 5.14 in [1]). Let B, = IT"(B}’), where II": H, — H, is the pth
covering map.

Lemma 3.3. Any geodesic n in N =M ~ By
at N must have length L[n] > 3n/(2\/R_,).

Proof. Let y be the shortest geodesic which starts and ends at 8NV .
Then as defined and discussed in Lemma 2.3, we know YU VY is a
geodesic 1-gon at the orbifold point P. By Lemma 2.1, we have

L[yaUyﬂUy] > 27t/,/Rmax. Since «, B eaB;/“,

V4 which starts and ends

i1
R

max

(3.9) Lir,] = Lizgl = 5

Thus we have L[y] > 3n/(2\/R_,,)-
Lemma 3.4. Let y be any geodesic 1-gon in the closure of BII,/ - B},/ s
with the endpoint on aB}J/“. Then we have L[y]> C,/\/R,,,, Where

(3.10) C, :min{27t, 2?" sin (ﬁ”)}

Proof. Since we have d(P, Q) > n/\/R_, and i(P,Hp) > n/\/R_._,
all the arguments given in Lemma 2.4 can be applied directly.

Lemma 3.5. If v is the shortest geodesic 2-gon in M wilh at least one
endpoint in N po=M— Bl/4 - Bl/4 then L[y] > (C, )/ where
(3.11)

max ’

C = mind2 3n i 2\/§7ts. V2n 2\/§7rsin V2n T
po T MDA &M, 5 Ty ™ 16 16 | 4"

Proof. If y makes angles at two points, call them 4 and B. If y
makes an angle at 4, choose B to divide v in half. If y makes no
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angles, choose 4 and B again to divide y in half. Let y be the union
of the two geodesic segments y, and 7,.
Since Cpp < n/4, we may assume that L[y] < n/(4/R__. ).
Case 1. When 4 €int(Np).
1/4

This implies Z4 = n. Any closed curve which connects 6B, and
9B, (or 0By" and 9B,*) has length L > m/(4\/R_.). Since C <

/4, we may let B eint(M - B}I,/4 Bé“) . By Lemma 5.6 in [1], we have
/B =m. So y isa closed geodesic. Hence, by Case 1 in Lemma 2.1, we

have L[y] > (27)/\/R .-
Case 2. When A€ 0Ny, and B ¢ int(Npp).

(I) Suppose B ¢ ON,, = 9B)/* UoBy*, which means B €
1nt(B1/4 B},/g) or int(Bg“—BlQ/g) since C < n/4. So 4B = n and

v is a geodesic 1-gon. The shortest distance between aB}I,/ * and <9B<12/ 4
is larger than (n/2)\/R,_ and C < n/4. Thus if 4 € 8BY*, then
B eint(By/*~B}®), andif A€ By*, then B e mt(B‘/“ 9By"). Hence
by Lemmas 3.3 and 3.4, we have L[y] > Cy/\/R s » where

(3.12) C2=min{27r,2\fnsi (\/1_6”) 2\;_nsi (\/1_6”)}

(IT) Suppose B € 831/4 U <9B1/4 Assume that 4 and B are both on

the same connected component of the boundary, namely 8B1/ 4, Then if
y intersects N, = M — Bll,/ , we will get a geodesic segment # from vy,
which starts and ends at N, . By Lemma 3.3, we have L[y] > L[n] >
3n/ (2\/1Tax).

If » does not intersect N, =M - BII,/ 4, then 7, and p, are both
in 3113/4' So we have Z4 < 7 and 4B < m. By Lemma 2.1, we have
Liy) > 2n/\/F,,; .

Assume that 4 and B are not on the same connected component of
the boundary, namely 4 on BBI/ * and B on 6B1/4. From Theorem
3.1, we have

(3.13) d(4, B) + —

— 2 d(Pa Q) Z s
2 Rmax Rmax

which implies that L[y] > 2 -d(4, B) > 2n/\/R_,. .
Corollary 3.6. For each point & € the closure of N, Po> we have
C
(3.14) i€, M)> —=

2R
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where

(3.19)
C =min{2n 3 2\/§nsin(\/§n> 2\/znsi (fn) n}
24 27 p 16 /° ¢ 16 '

Theorem 3.7. If M is any football with positive curvature, then for each
point £ € M, we have

(3.16) A(expy(B(0, n/\ /R__/2))>C/R___,

where C is a constant.
Proof. If € the closure of N, P> by Corollary 3.6, we then have

A(exp,(B(0, n/ R..ox/2))) 2 A(expg(B(0, / R_../2))
(3.17) > A(exp,(B(0, §C, / VR 2)
>2(1 - cosCp )[CPQ] n/Rmax.

If & EB;,/4 (or € BIQ/4) , then

(3.18) expp(B(0, }/,/Rmax/2)) C exp,(B(0, %/,/Rmax/2)),
(3.19) Aexp) (B(O, %/,/Rmaxﬂ))) > g

and

AR (B0, 7 /Ry 1)) 2 Alexpy(BO. 4\ R/ D)
(3.20) 20,4 /R

> 2n(1 —cos 1/4)
- 8pR )

max

Let
(3.21) C=min{2(l—cosC e Q]

27(1 —cos1/4) 2r(1 —cosl/4)
8gR ’ 8R )

max max
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4. Ricci solitons on bad orbifolds
We know that the Ricci flow is the gradient flow of the relative energy:

E(g,h)=Allog(g/h)(Rgﬂg+Rhﬂh),

OF 2

(4.1) E=—2/M(Rq—r) Ky
The relative energy £ has no absolute minimum on bad orbifolds because
there are no metrics of constant curvature on bad orbifolds. (See Figure
8.) There is a 1-parameter family of conformal diffeomorphisms of the
orbifold to itself, along which the soliton flows. Translating any metric by
one of these diffeomorphisms reduces its energy by a fixed amount. This
is related to Futaki’s obstructions (see [2], Theorem 8.3.2, p. 125). For
completeness, we would like to discuss the existence and uniqueness of the
soliton solution.

Theoremd4.1. Or any 2-dimensional orbifold, there exists a unique Ricci
soliton.

Proof. Richard Hamilton [3, Theorem 10.1] proved that, by providing
a way of getting soliton solutions on any orbifolds, the only soliton solution
on any 2-dimensional manifold is the metric of constant curvature. Good
orbifolds are those which can be covered by manifolds, where the group
action induced by the covering map is an isometry. Under the Ricci flow
any isometry is preserved. So the uniqueness of the Ricci soliton solution
on a good orbifold can be obtained directly from the cover manifold. Here
we are going to show the existence and uniqueness of the soliton solution
on any bad orbifold. We warn the reader that the notation we use here
may differ from that in [3]. From [3], we know that the way to get a
soliton solutionona (Z_, Z ﬂ)-football, where « < §, is to find a constant

k € (0, 1) such that the equation y = ke’~' has two solutions

=1-p<l,
(4.2) {y p<
y=1l+4+g>1,
and V
(4.3) 0<a/f=p/1<Ll.

For any given « and f#, if there is a Ricci soliton, then there exists (at
least) a constant b € (0, 1), such that

{p:b'aa

4.4
(4.4) b
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teardrop football
FIGURE 8
So
=1-ba<l,
4.5) { Y
y=14+b>1.
Define f:(0, 1) —» R by
(4.6) Flby = 1HBB _ )

“1-ba

593



594 LANG-FANG WU

Note that if k€ (0, 1), then

y=1-ba<l,
y=1+b8>1.

e l-ba=ke " and 1 +bf =ke”, forbe(0,L);

olzbe 1408 4 forbe (0, 1).

4.7 ey= ke*™" has two solutions {

R T T
L+b8 _  bia+p)
5 = ¢ , forbe(0,1);

(4.8) o f(b)=0, forbe(0,1).

£B) = (a4 B) {——1——— - eb(‘“’”} ,

2
(4.9) ) (;a_ o b(a+B)
170) = (04 ) G~ (s ")
Particularly, we have
f(0)=0,
(4.10) Moy =o,

| S0 = (a+B)a~p) <0,
and lim, o f(b) = +00. So there exists a smallest nonzero b € 0, 1)
such that f(b) < 0 is a local minimum. On the other hand,

FB =@+ )| g -

(4.11) f—a—-b-af <0.

Hence Vb > b, B-—a-b-af <0.
Claim 1. For any solution b of f(b) =0 between 0 and 1,

(4.12) @) > o.

Suppose b >0 and f(8) = (1+5-B)/(1-b-a))—e” " = 0. Since
f(b) is nonpositive near » = 0 and b is the smallest local minimum, we



RICCI FLOW ON 2-ORBIFOLDS 595

have b >5. So
(4.13) B—a—-b-af <0,
and
W) 3y - 1 b-(a+ )
796) = @t )| g =)
B 1 1+b-p
(19 _(a+ﬂ)[(1—5-a)2 1—b.a]
_z baf+a-~p
b )

This proves Claim 1. Claim 1 also tells us that we have one and only
nonzero solution 5 for f(b) = 0 between 0 and L. That implies the
existence and uniqueness of the soliton solution on a 2-dimensional bad
orbifold.

Corollary 4.2. The Ricci flow gives a canonical metric for any 2-dimen-
sional orbifold.

On any orbifold with y > 0, the soliton solution is rotationally sym-
metric metric of positive curvature. That assures that the soliton solution
can be embedded in R’ . To see the exact shape of the soliton solution of
a(Z,,Z B)-football in R® , one has to explicitly solve the inverse function

y=h""u) of

¥ dy
(19 “z/yﬁﬁe—y-—‘ﬂ(w’ylﬁysb’
2

where k € (0, 1), y, and y, are the two solutions of y—key_l =0, and

(4.16) =

VY, <y <y, y- ke*™' >0, s0 h~' is well defined.) (See Theorem
10.1 in [3].) The soliton solutionon a (Z_, Z g)-football induces a metric

ds® = g(x)(a’x2 +d 02) on the cylinder with coordinates (x, 8), where
g(x)=gx+Ct)
(4.17) =y -k,

Qﬁl“
PPN

®
I
|
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and C is the velocity with which the soliton is moving by translation in
x . Look at the embedding i* from the cylinder to the space R , using
cylindrical coordinates (f, 8, z):

(4.13) i":(x, 8)— (f(2), 8, z(x)).
The induced metric on the embedded orbifold is
ds’ = (1+ f)dz" + 1de’,

where 5 .
(&) -5
dx) —  4g [,
(3) -1
e T — k!
(4.19) == G-k,

In particular, we have

(4.20) (B0 _ e~ 1iroo)
[%(ro0)] ~ (1K (=20)

ke -1y, -1
- ] — ke ! Bl 1_y1 T a

which implies that by choosing the constant C suitably, we will have
f,(z(+00)) = 1/Va® — 1 and f,(z(~c0)) = 1/4/ f* — 1. Hence the angles
at the two endpoints are 2z/a and 2z/8, and the embedding defined
above is a (Z,, Z,)-football in R*.

b4
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